
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

Predictive Graph Neural Network for Identifying 

HIV Inhibitors Using Weighted Graphs of 

Molecular Structures 
 

Razi Rachman Widyadhana - 135230041  

Program Studi Teknik Informatika  

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia  
1rr.widyadhana@gmail.com, 13523004@std.stei.itb.ac.id  

 

 

 

Abstract—Human Immunodeficiency Virus (HIV) remains the 

world's number one killer of infectious diseases. The spread of HIV 

is growing rapidly and affects women, teenagers, and children. By 

its popularity, machine learning has revolutionized to tackle the 

time-consuming discovery of new treatments. This paper reveals 

how GNNs not only identify an HIV inhibitor by its molecular 

structure, but also highlight the significant role that weighted 

graph plays in improving the accuracy of the predictions. This 

paper offers new possibilities for healthcare industry developments 

through machine learning applications. 
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I.   INTRODUCTION 

Human Immunodeficiency Virus (HIV) remains the world's 

number one killer of infectious diseases. HIV attacks cells that 

support the body in fighting the infection, making a person more 

vulnerable to other infections and diseases. If left untreated, HIV 

leads to Acquired Immunodeficiency Syndrome (AIDS). It is 

the late stage of HIV infection that happens when the virus badly 

damages the body's immune system [1]. 

As blood transfusions, usage of needles, and sexual 

intercourse increased, the spread of HIV is growing rapidly and 

affects women, teenagers, and children. By the end of 2017, the 

World Health Organization (WHO) reported that about 36.9 

million people were living with HIV/AIDS, 940,000 deaths due 

to HIV, and newly 1.8 million people were infected with HIV or 

about 5,000 new infections per day.  

 

Fig. 1. HIV case reports in 2017 by WHO. Adapted from [2]. 

The human body cannot get rid of HIV and no effective HIV 

cure exists. Luckily, effective treatment with HIV medicine 

containing HIV inhibitors is available to help control the virus. 

This treatment is known as antiretroviral therapy (ART). ART 

is the best treatment method for preventing the progression of 

HIV to AIDS [3]. 

The exponential growth of technology influences the health 

industry in medicine development. By its popularity, machine 

learning has revolutionized to tackle the time-consuming 

discovery of new treatments. This paper utilizes Graph Neural 

Networks (GNNs), known for their accuracy in learning on 

graph-structured. Since HIV inhibitors are molecular structures 

that can be naturally represented as weighted graphs, GNNs are 

particularly well-suited for modelling their properties.  

Therefore, this paper reveals how GNNs not only identify an 

HIV inhibitor by its molecular structure, but also highlight the 

significant role that weighted graph plays in improving the 

accuracy of the predictions. 

 

II. THEORETICAL FOUNDATIONS 

A. Graph 

Graphs are a form of data structure that consists of vertices 

and edges. The graph data structure has the notation G(V,E), 

where V is the set of vertices and E is the set of edges [4]. Graph 

theory is the branch of discrete mathematics that studies the 

properties and applications of graphs. In general, graphs are 

used to represent discrete objects and the relationships between 

them. According to the history of graphs, graphs have the 

purpose of visualizing abstract objects. 

 

Fig. 2. Examples of Graph. Adapted from [4]. 

Each vertex of a graph has something called a degree. The 

degree of a vertex is the number of edges connected to that 
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vertex. The degree of a vertex has the notation as a vertex. A 

vertex can be a remote vertex if the vertex has zero degree or no 

edge connected to the vertex. 

Based on the Handshake Lemma, the number of degrees of 

all vertices in a graph is even, twice the number of edges. As a 

result of the Handshake lemma, it can be concluded that for any 

graph G, the number of vertices with odd degrees is always even. 

Based on this conclusion, a graph cannot have an odd number of 

vertices of odd degree. 

Graphs can be divided into two types based on their direction, 

directed graph and undirected graph. an undirected graph is a 

type of graph in which all edges are bidirectional. This implies 

that the edges do not possess any inherent directionality. 

 

Fig. 3. Examples of Undirected Graphs. Adapted from [4]. 

In contrast, a directed graph consists of a sequence of vertices 

connected by directed edges, with each edge pointing from one 

vertex to its successor. A directed path excludes any repeated 

edges. If the path has no repeated vertices, it qualifies as a simple 

path. When the first and last vertices in a directed path match, 

and at least one edge connects them, this path becomes a 

directed cycle. A directed graph qualifies as a directed acyclic 

graph if it lacks directed cycles.  

 

Fig. 4. Examples of Directed Graphs. Adapted from [4]. 

Graphs can also be divided into types based on whether or not 

weights are assigned. A weighted graph is a graph with each 

vertex or edge assigned to a number. This number is known as 

the weight of the graph. The weights can represent various 

concepts depending on the problem at hand. 

 

Fig. 5. Weighted Graph. Adapted from [5]. 

Graphs have several terminologies, including neighbor, side, 

path, circuit, and upagraph. Two vertices can be said to be 

connected or neighboring if there is an edge connecting them. 

there is an edge that connects the two vertices. Furthermore, 

there is the term side-by-side which means that an edge 𝑒 =
(𝑣𝑗 , 𝑣𝑘) can be said that edge 𝑒 is adjacent to the vertex 𝑣𝑗  and 

𝑣𝑘 . 

A path is a sequence of vertices and edges that connect a start 

vertex and an end vertex. Terminology that has a close 

relationship with trajectories is a circuit, which is a path that 

starts and ends at the same vertex. Lastly, an upagraph is a part 

of a graph and an upagraph 𝐺1 can be said to be a part of a graph 

𝐺 if the vertices and edges of 𝐺1 are a subset of the set of vertices 

and edges of graph 𝐺. 

 

B. Graph Neural Networks (GNNs) 

Graph Neural Networks (GNNs) are specific machine 

learning models for processing data that can be represented as 

vectors on all graph attributes (nodes, edges, global-context). 

Ideally, these vector representations will have some meaningful 

relationship to the original graph, which makes them perfect for 

tasks involving relationships and dependencies between entities 

in complex systems [6]. 

The architecture involves multiple graph convolution layers 

that aggregate information from neighbouring nodes, allowing 

the network to learn rich representations of the graph structure. 

These layers are followed by non-linear activation functions 

such as ReLU to introduce complexity and dropout layers to 

prevent overfitting (exceptionally well on training data but fails 

to generalize to unseen data). The final output layer generates 

predictions for certain tasks. 

 
Fig. 6. Graph Neural Networks Architecture. Adapted from [7]. 

 

GNNs tasks can be broadly categorized into node-level, edge-

level, and graph-level tasks. At the node level, tasks such as 

node classification aim to predict the properties of individual 

nodes, such as categorizing online users or items and anomaly 

detection in banking or networks. For link prediction, it 

identifies missing links between node pairs, like modelling 

interactions in social or biological networks. Graph-level tasks 

focus on learning representations of entire graphs, which are 

crucial in chemistry by representing molecules as graphs and 

predicting their properties. These various tasks highlight the 

flexibility of GNNs in tackling problems across different 

industries like healthcare, finance, and social networks within 

graph-structured data. 

 

 

Fig. 7. Tasks of Graph Neural Networks (GNNs). Adapted from [8]. 
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GNNs are closely associated with weighted graphs because of 

their capability to process and derive insights from these 

structures effectively. Weighted graphs provide additional 

information beyond simple connectivity by assigning weights, 

indicating the strength, distance, or other characteristics of the 

relationships between nodes and the nodes themselves. 

Integrating GNNs with weighted graphs allows these neural 

networks to exploit the richer information embedded in the 

graph structure. 

 

C. Evaluation Metric 

In evaluating the performance of a classification model, 

selecting appropriate metrics is essential to ensure that the 

predicted results are fit for purpose analysis. Some metrics have 

different interpretations in the context of evaluating multi-class 

classification methods. The relevant quantities for calculating 

the metrics for a binary class containing 0 (negative) and 1 

(positive) are the four entries in the confusion matrix. 

M = (
𝑇𝑁 𝐹𝑃
𝐹𝑁 𝑇𝑃

)  

 

where 𝑇𝑁 denotes the number of correctly classified negative 

samples (True Negative), 𝑇𝑃 denotes the number of correctly 

classified positive samples (True Positive), 𝐹𝑁 denotes the 

number of samples incorrectly classified as negative (False 

Negative), and 𝐹𝑃 denotes the number of samples incorrectly 

classified as positive (False Positive). From those quantities, 

here are the metrics that are often used. 

1) Precision: The precision denotes the proportion of the 

retrieved samples which are relevant and is calculated as the 

ratio between correctly classified samples and all samples 

assigned to that class.  

 

𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

2) Recall: The recall, also known as the sensitivity or True 

Positive Rate (TPR), denotes the rate of positive samples 

correctly classified, and is calculated as the ratio between 

correctly classified positive samples and all samples assigned to 

the positive class. 

 

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

This metric known as being among the most important for 

medical studies, since it is desired to miss as few positive 

instances as possible, which translates to a high recall. 

 

3) F1 score: The F1 score is the harmonic mean of precision 

and recall, meaning that it penalizes extreme values of either. 

This metric is not symmetric between the classes, it depends on 

which class is defined as positive and negative.  

 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐 × 𝑅𝑒𝑐

𝑃𝑟𝑒𝑐 + 𝑅𝑒𝑐
=

2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4) 

 

D. HIV Inhibitors 

Approved antiretroviral (ARV) HIV medicines containing 

HIV inhibitors are divided into two main classes based on how 

each interferes with the HIV life cycle [9]. Experts advise 

combining the medicines to avoid creating medicine-resistant 

strains of HIV. 

 

1) Block the replication process: Nucleoside Reverse 

Transcriptase Inhibitors (NRTIs) reverse transcriptase and 

reverse transcription prevents HIV from replicating. HIV uses 

reverse transcriptase to convert its RNA into DNA (reverse 

transcription). Similar to NRTIs, Non-nucleoside reverse 

Transcriptase Inhibitors (NNRTIs) bind to and later block 

reverse transcriptase, an enzyme HIV needs to make copies of 

itself. Protease Inhibitors (PIs) block protease. Lastly, Integrase 

Strand Transfer Inhibitors (INSTIs) stop HIV from making 

copies of itself by blocking a key protein that allows the virus to 

put its DNA into the healthy cell's DNA. 

 

Fig. 8. Different inhibitors mechanism in fighting HIV, (a) NRTIs and 

NNRTIs, (b) PIs, and (c) INSTIs. Adapted from [9] 

 

2) Prevent the cell entering process: Unlike NRTIs, NNRTIs, 

PIs, and INSTIs, which work on infected cells, fusion inhibitors 

block HIV from getting inside healthy cells. 

 

Fig. 9. Fusion Inhibitor mechanism in fighting HIV. Adapted from [9] 

 

E. SMILES and Molecular Structure 

Simplified Molecular-Input Line-System (SMILES) is a 

chemical notation used for information processing from modern 

chemistry to describe chemical structures with ASCII characters 

[10]. 

SMILES denotes a molecular structure as a graph and 

essentially the two-dimensional valence-oriented picture 

chemists draw to describe a molecule. This is an essential 

simplification of molecular structure. Extracting SMILES from 

a molecular structure contains the following four rules: 
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1)  Atoms: Atoms are represented by their element symbols. 

All elements of a SMILES string are written in square brackets, 

like [Au] for elemental gold, with the exceptions of the organic 

subset, such as B, C, N, O, P, S, F, Cl, Br, and I. Attached 

hydrogens are implied in the absence of brackets, the following 

atomic symbols are valid SMILES notations. 

TABLE I 
VALID SMILES NOTATIONS FOR ATOMIC SYMBOLS 

SMILES Notation Description 

C Methane (CH₄) 

N Ammonia (NH₃) 

O Water (H₂O) 

P Phosphine (PH₃) 

S Hydrogen sulfide (H₂S) 

Cl Hydrogen chloride (HCl) 

 

Explicit notation of hydrogen atoms occurs when they are 

attached to a non-organic subset. Attached hydrogens and 

formal charges are always specified inside brackets. The number 

of attached hydrogens is shown by the symbol H followed by an 

optional digit. Similarly, a formal charge is shown by one of the 

symbols + or -, followed by an optional digit. If unspecified, the 

number of attached hydrogens and charges is assumed to be zero 

for an atom inside the bracket. 

 
TABLE II 

SMILES NOTATIONS FOR ATTACHED HYDROGEN AND FORMAL CHARGES 

SMILES Notation Description 

[H+] Proton 

[OH-] Hydroxyl anion 

[OH3+] Hydronium cation 

[Fe+2] Iron (II) cation 

[NH4+] Ammonium cation 

 

SMILES also recognizes constructions of the form [Fe+++] as 

synonymous with the form [Fe+3]. 

2)  Bonds: Within the SMILES nomenclature, bonds may be, 

and usually are, omitted if they are either aromatic or single 

covalent bonds. Double bonds are represented with ‘=’, and 

triple bonds are represented by ‘#’. 

 
TABLE III 

SMILES NOTATIONS FOR STRUCTURES WITH BONDS 

SMILES Notation Description 

CC Ethane (CH₃CH₃) 

C=C Ethylene (CH₂=CH₂) 

COC Dimethyl ether (CH₃OCH₃) 

CCO Ethanol (CH₃CH₂OH) 

C=O Formaldehyde (CH₂O) 

O=C=O Carbon dioxide (CO₂) 

O=CO Formic acid (HCOOH) 

C#N Hydrogen cyanide (HCN) 

[H][H] Molecular Hydrogen (H₂) 

 

3) Branches: Branches are depicted in parentheses ‘()’. 

Branches can be nested or stacked. The structure's name is 

according to the convention of IUPAC (International Union of 

Pure and Applied Chemistry). 

 

 
Fig. 10. SMILES of  3-propyl-4- isopropyl- 1 -heptene. Adapted from 

[10]. 

 

4) Cyclic Structures: Some molecules are in cyclic structures. 

They are converted in-silico to linear structures by breaking a 

single or aromatic bond within the cycles. For SMILES 

extraction, the broken bonds are denoted by writing a number 

right behind the formerly connecting elements. This leaves a 

connected noncyclic graph. 

 

Fig. 11. SMILES of Cyclohexane, a cyclic structure. Adapted from 

[11]. 

 

5) Aromatic: Aromaticity is detected by applying an extended 

definition of Hückel’s rule, defined as (1) 

4𝑛 + 2 𝑝𝑖 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠  ⟺  𝑎𝑟𝑜𝑚𝑎𝑡𝑖𝑐 (1) 

where 𝑛 is a non-negative integer. If there is no 𝑛 that fulfill the 

condition, then a planar ring molecule will not have aromaticity.  

 

Fig. 12. Benzene, the most widely recognized aromatic compound with 

six delocalized π-electrons (4𝑛 +  2, 𝑓𝑜𝑟 𝑛 =  1). Adapted from [11]. 

 

Aromaticity within SMILES is denoted by writing the atoms 

part of an aromatic cycle in lowercase letters. 

 

Fig. 13. Different instances of aromatic Nitrogen, whose SMILES are 

denoted by writing it in lowercase letters. Adapted from [11]. 

 

III.   IMPLEMENTATION 

The instruments used in this paper consist of two main 

components, namely hardware and software. The hardware 

specifications used are: Intel i7-8550U Processor, Intel UHD 

Graphics 620 GPU, and 8 GB RAM. Then, the software 

specifications used are Python 3.12.4 programming language 

and RDKit open source cheminformatics toolkit for generating 

graph weights from SMILES, as well as Jupyter Notebook and 

Kaggle for the program kernel. 
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A. Dataset Exploration 

In this phase, the dataset was obtained from [12], which 

contains detailed information on 41,127 chemical structures. 

Each chemical structure is described under the SMILES format 

and their activities, evaluating the inhibitor activity (1) or the 

inactivity (0) of the chemical structures. 

 

Fig. 14. Samples of the HIV Dataset 

For better understanding, the SMILES are visualized to their 

chemical structure form. Using RDkit tool to visualize the 

SMILES in their chemical structure form,  

 

Fig. 15. Molecule Structure Visualization Algorithm in Python 

Fig. 15. creates graph as chemical structure from selected 

samples with colors for each atoms. 

 

Fig. 16. Samples of Molecule Structure in the HIV dataset 

The dataset was split into 80% training and 20% testing sets. 

The training set were oversampled for training the model to 

learn patterns and relationships with imbalanced class. 

Meanwhile, the testing set evaluates the model's performance by 

assessing its ability to generalize to unseen data. Visualization 

of the train set and test set activity distribution before 

oversample is shown in Fig. 17. 

 

Fig. 17. Distribution of train set and test set of HIV dataset 

B. Weight Extraction 

After preparing the dataset, the next step is to extract weights 

for each edge in the graph. This paper utilizes additional 

libraries, namely Torch for creating embeddings for the graph's 

nodes/edges and RDKit for handling the molecular data and 

compute relevant properties.  

First, the Molecule class is created to represent molecular 

structures and store essential information about nodes and 

edges. The attributes extracted from the molecular data, as 

shown in Fig. 17., include node features such as atom type, 

degree, formal charge, chirality label, hybridization, and 

aromaticity. Edge features include bond type, whether the bond 

is part of a ring, and bond stereochemistry. These weights are 

crucial for analyzing and modeling the graph effectively. 

 

 

Fig. 18. Attributes and its dimensions for node and edge features used 

in the Molecular Graph. Adapted from [13]. 

 

Inside the Molecule class, _get_node_features is 

defined to utilizes RDkit tool to extract the weights for node 

features arrays to the Graph as  torch sensor. 

 

Fig. 19. Node Weights Extraction Algorithm in Python. 
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Then, _get_edge_features is defined to utilizes RDkit 

tool to extract the weights for edge features arrays to the Graph 

as  torch sensor. 

 

Fig. 20. Edge Weights Extraction Algorithm in Python. 

 

C. Graph-Level Classification 

The first GNNs architecture employs Graph Attention 

Networks (GAT) to process graph-level classification tasks. 

GAT utilizes attention mechanisms to assign different 

importance scores to neighboring nodes, allowing the model to 

focus more on relevant connections within the graph. 

 

Fig. 21. First version of GNNs using Convolutional Layers in Python. 

It begins with an input layer that takes node features and 

processes them through three GAT convolutional layers, each 

featuring multi-head attention mechanisms with three heads and 

dropout regularization. Multi-head attention improves model by 

capturing diverse aspects of node relationships, while dropout 

prevents overfitting by randomly deactivating connections 

during training. These layers enhance the model's ability to 

capture complex relationships within the graph structure. 

After each convolutional layer, linear transformations 

condense the multi-head outputs into a unified embedding size. 

In forward function, the outputs of the pooling layers are 

concatenated using both global mean pooling (GMP) and global 

attention pooling (GAP) to produce rich graph-level 

representations. GMP calculates the average of node features, 

while GAP uses attention weights to aggregate node features 

selectively. Finally, the concatenated outputs pass through two 

fully connected linear layers with dropout for regularization, 

concluding with a classification layer that predicts the target 

labels. 

The second GNN architecture utilizes TransformerConv 

layers to leverage attention mechanisms and capture long-range 

dependencies within graphs. TransformerConv extends the 

traditional Transformer model, widely used in natural language 

processing, to graph data by incorporating edge features and 

multi-head attention for effective information propagation. The 

model initialization allows flexible configurations, such as 

embedding size, number of attention heads, dropout rates, and 

pooling ratios. 

 

Fig. 22. Second version of GNNs using Transformers in Python. 
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It starts with an initial TransformerConv layer, followed by 

linear transformation and batch normalization to stabilize 

training. Batch normalization normalizes inputs to speed up 

convergence and improve model performance. Multiple 

TransformerConv layers, each followed by transformation and 

batch normalization, process the data further. At predefined 

intervals, TopKPooling layers are applied to reduce the graph 

size while retaining key structural features. In forward 

function, The global representations from different stages are 

concatenated using GMP and GAP pooling techniques to 

capture hierarchical information. 

Lastly, train is defined to start the learning process of the 

GNNs. It processes the oversampled train data in batches, 

computes predictions, evaluates loss, and updates its parameters 

through optimization techniques. Using train, GNNs learns 

patterns effectively and improves performance over multiple 

iterations. 

 

Fig. 23. GNNs Training Algorithm in Python. 

Both versions will be compared by their performance in 

graph-level classification tasks, providing insights into their 

strengths and limitations when handling complex graph 

structures. 

 

D. Evaluation 

The test and evaluation phase is designed to assess the model's 

performance using metrics such as the confusion matrix, 

precision, recall, and F1-score. It evaluates the model's ability to 

generalize to unseen data and provides insights into its 

classification accuracy and reliability.  

 

Fig. 24. GNNs Test Algorithm in Python. 

By running the code in Fig. 24., the model generates 

predictions and is evaluated using various performance metrics, 

as shown below. 

 

Fig. 25. Convolutional Layers GNNs Confusion Matrix 

Fig. 25 illustrates the confusion matrix for the convolutional 

layers of GNNs, providing insights into the model's potential 

application in HIV medicines. The high number of correctly 

identified HIV inhibitors suggests the model could effectively 

assist in screening compounds for antiviral activity. However, 

the misclassification of some inhibitors as non-inhibitors 

highlights the need for further refinement to reduce false 

negatives, which is critical in drug discovery to avoid 

overlooking potentially effective treatments. 

 

Fig. 26. TransformConv GNNs Confusion Matrix 

Fig. 26., showing the confusion matrix for TransformConv 

GNNs, demonstrates improved performance compared to Fig. 

25., which represents the Convolutional Layers GNNs. In Fig. 

26., the number of correctly classified non-inhibitors increased 

from 22,273 to 24,273, and false positives dropped significantly 

from 1,341 to 296. Similarly, true positives for HIV inhibitors 

increased from 9,318 to 10,318, while false negatives decreased 

from 6,173 to 5,183. 

By those confusion matrices, the recall, precision, and F1-

score were calculated to provide a more detailed evaluation of 

the model's performance, as shown in Table IV. 
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TABLE IV 

EVALUATION METRIC RESULTS 

 Precision Recall F1 Score 

Convolutional 

Layers GNNs 
0.872 0.625 0.720 

TransformConv 

GNNs 
0.972 ↑ 0.10 0.665 ↑ 0.04 0.790 ↑ 0.07 

 

From a health perspective, this improvement is crucial as it 

reduces the risk of misclassifying potential HIV inhibitors as 

non-inhibitors, thereby minimizing false negatives that could 

lead to missed treatment opportunities. It also lowers false 

positives, which can prevent unnecessary follow-up 

investigations on ineffective compounds. These enhancements 

suggest that the TransformConv GNNs model provides more 

reliable predictions, making it a better candidate for drug 

discovery applications, particularly in identifying effective HIV 

inhibitors. 

IV.   CONCLUSION 

This paper demonstrates the successful implementation of 

Predictive Graph Neural Networks (GNNs) for identifying HIV 

inhibitors by leveraging weighted graphs of molecular 

structures. By representing molecules as graph-structured data, 

the proposed method effectively captures molecular features and 

relationships, enabling accurate predictions of inhibitory 

properties. The model’s performance, evaluated through metrics 

such as precision, recall, F1-score, and confusion matrices, 

highlights its reliability and robustness in distinguishing 

between HIV inhibitors and non-inhibitors.  

The application of GNNs in molecular analysis not only 

streamlines drug discovery processes but also provides an 

innovative approach to studying chemical compounds with 

biological relevance. The integration of weighted graphs 

enhances the model’s ability to interpret molecular interactions, 

contributing to more accurate classification and predictive 

performance. This approach offers a valuable tool for 

accelerating HIV medicines, minimizing false predictions, and 

supporting more targeted treatment development.  

Along this line, future research may explore more advanced 

GNN architectures to enrich molecular feature extraction and 

more reliable predictions. Additionally, expanding the model to 

analyze more complex molecular structures or drug 

combinations could further improve predictive accuracy, 

ensuring broader applicability in healthcare research. 

 

V.   APPENDIX 

The methods and experiments presented in this paper are 

implemented in the following GitHub repository: 

https://github.com/zirachw/Algeo-GNNs 

Further explanations of the implementation in this paper are 

available in the following YouTube video: 

https://linktr.ee/Zirach 
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